We are proud to announce the release of ‘RARD’, the related-article recommendation dataset from the digital library Sowiport and the recommendation-as-a-service provider Mr. DLib. The dataset contains information about 57.4 million recommendations that were displayed to the users of Sowiport. Information includes details on which recommendation approaches were used (e.g. content-based filtering, stereotype, most popular), what types of features were used in content based filtering (simple terms vs. keyphrases), where the features were extracted from (title or abstract), and the time when recommendations were delivered and clicked. In addition, the dataset contains an implicit item-item rating matrix that was created based on the recommendation click logs. RARD enables researchers to train machine learning algorithms for research-paper recommendations, perform offline evaluations, and do research on data from Mr. DLib’s recommender system, without implementing a recommender system themselves. In the field of scientific recommender systems, our dataset is unique. To the best of our knowledge, there is no dataset with more (implicit) ratings available, and that many variations of recommendation algorithms. The dataset is available at http://data.mr-dlib.org, and published under the “Creative Commons Attribution 3.0 Unported (CC-BY)” license.

For a full description of the dataset, please read the pre-print that is soon going to be published by the D-Lib Magazine.

Leave a comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.